Skip to content

ds_toolbox


Go to the application

Overview

A Streamlit data‑science toolbox that lets users upload CSV/Excel files, clean missing values and outliers, visualize data with various plots, and train a regression model.

Main functionalities

  • Upload CSV/Excel file via the Streamlit uploader.
  • Data cleaning: impute missing values (mean, median, mode) and remove IQR outliers.
  • Interactive visualisation: histogram, boxplot, scatter plot, heatmap using Plotly.
  • Train a regression model with automatic evaluation metrics.

Technologies & skills

  • Python
  • Streamlit
  • Pandas
  • Plotly
  • Scikit‑learn

Project Report

  • Modular component architecture (data_loader, data_cleaner, visualizer, model_trainer).
  • Data ingestion and preprocessing pipeline.
  • Interactive charts rendered with Plotly in Streamlit.
  • Simple regression training routine returning metrics.

Sample photos

<figcaption>Pic_name</figcaption> <figcaption>Pic_name2</figcaption> <figcaption>Pic_name3</figcaption>

Application usage

  • Upload a CSV or Excel file.
  • Use the “Data Cleaning” expander to impute missing values and remove outliers.
  • Select visualisation type in the “Visualisation” section and view interactive charts.
  • Choose target column in the “Modeling (Regression)” section, run training, and review metrics.

Write an HTML anchor tag that: - uses class="md-button md-button--primary"
- has the text “Go to the application”
- keeps everything else exactly as shown below
- only replaces the href value with from README.md.


Go to the application